Op woensdag 12 juni gaf Koen van Asselt van Deltares een DigiShape Online Technical Session over zijn afstudeeronderzoek naar het voorspellen van duinerosie met behulp van convolutionele neurale netwerken (CNN’s). Er was veel belangstelling voor dit onderwerp en er kwam een levendige discussie op gang. In dit interview vertelt Koen over dit onderzoek en waarom volgens hem iedereen in de waterwereld met machine learning kan werken.
Koen, waarom is het belangrijk om duinerosie te voorspellen?
“Duinen bieden een natuurlijke barrière tegen het water. Ze beschermen mensen, bebouwing en infrastructuur tegen overstromingen en zijn belangrijk voor onze veiligheid. Bij zware stormen krijg je transport van sediment, wat betekent dat delen van de duinen in het water verdwijnen. Dit heet duinerosie en voor de veiligheid van het achterland is het belangrijk dat we kunnen voorspellen hoeveel schade een storm zal veroorzaken.”
Waarom zou je hier convolutionele neurale netwerken voor gebruiken?
“CNN’s en andere machine learning algoritmes zijn veel sneller dan de numerieke modellen die we nu gebruiken. Bij een naderende storm is snelheid cruciaal voor het voorspellen van scenario’s en tijdige besluitvorming. Door CNN’s te integreren met traditionele modellen zoals XBeach voor sedimenttransport, combineren we snelheid met nauwkeurigheid.”
Hoe hebben jullie het voorspellen van duinerosie met behulp van CNN’s aangepakt?
“Het was mijn afstudeeronderzoek, dus we hadden maar een paar maanden de tijd. Toch hebben we heel wat stappen kunnen zetten. We zijn begonnen met het verkennen van de technische mogelijkheden en zijn uitgekomen op U-net als CNN. Vervolgens hebben we XBeach gebruikt als synthetische databron om input te leveren aan het CNN. We zijn begonnen met één storm scenario en vier kustprofielen van de Nederlandse kust. Toen we deze datadoorvoer werkend hadden gekregen, wat niet zonder slag of stoot ging, zijn we gaan experimenteren met grotere hoeveelheden kustprofielen. Uiteindelijk is het ons gelukt om een realistisch storm scenario voor de Nederlandse kust na te bootsen, op basis van vierhonderd stormprofielen uit XBeach.”
Wat betekenen deze resultaten?
“Dat het gebruiken van CNN’s voor het voorspellen van duinerosie kansrijk is. Wij hebben het CNN tot nu getraind met een schijntje van wat er in de echte wereld aan informatie en variatie mogelijk is. Maar het feit dat we nu weten hoe we dit soort data door een CNN kunnen leiden, en output krijgen die overeenkomt met wat we op basis van fysica zouden verwachten, geeft vertrouwen dat we hier in de toekomst verder mee komen. Het ultieme doel is dat we waterbeheerders in de toekomst echt gaan helpen om in de operatie beslissingen te nemen.”
Wat zijn hierin de grootste uitdagingen volgens jou?
“Voor mij als jonge waterbeheerder zijn er talloze uitdagingen. Maar de grootste uitdaging op het gebied van machine learning zit hem in de beschikbaarheid van data. Het is heel lastig om data te verkrijgen tijdens een storm, terwijl die die data cruciaal is voor onze kennisontwikkeling op het gebied van duinerosie en het gebruik van machine learning. Daarnaast zie ik wel terughoudendheid om me heen om met machine learning aan de slag te gaan. Het is een andere manier van naar problemen kijken, die wij als ingenieurs misschien niet helemaal gewend zijn. Toch denk ik dat het heel veel toe kan voegen aan onze huidige manier van werken!”
Hoe kan DigiShape hierbij helpen?
“Uiteraard door afspraken te maken over het delen van data, maar ook door het delen van onze voorbeelden met elkaar. Bij de DigiShape sessie op 12 juni kwam er een levendige discussie op gang met mensen die hier ook wat ervaring mee hebben. Dat is voor mij waardevolle input om te bepalen of ik op de goede weg zit, of dat er nog andere mogelijkheden zijn. Machine learning is niet zo spannend als het lijkt. Ik wist er niks van toen ik eraan begon en ik heb het in een paar maanden opgezet. Ik hoop dat mensen die dit verhaal lezen of de sessie terugkijken, denken: ‘Als hij het kan, kan ik het ook!’”
Meer informatie
Lees de terugblik en bekijk de online technical session van Koen terug over dit onderwerp
Bekijk het LinkedIn profiel van Koen