
Critical path analysis
An extension to OpenCLSim

Arie de Niet, Luke Moth, Frank Klein Schaarsberg
DigiShape day – June 27th 2023



Contents

2

1. Introduction to OpenCLSim
2. Critical path extension

3. Example case - cutter and barges

4. Technical approach

5. Results



Introduction to OpenCLSim

3

˗ Open source Python tool for Complex Logistics Simulation
˗ Open community, active members TU Delft, Deltares, Van Oord and Witteveen+Bos

˗ Based on generic discrete event simulation package SimPy

˗ OpenCLSim: additional layer to mimic concepts of maritime transport

· rule driven scheduling of cyclic activities 

· aims at in-depth comparison of alternative operating strategies
· loading and unloading of material (bulk of discrete goods)

· transport/moving



Background of critical path extension

4

Van Oord would like to use OpenCLSim to compare simulations:
- optimal utilization of most expensive assets

- sensitivity of the planning to disturbances 

- possibilities for green steaming – sustainability

Requires identification of the critical path

Assignment to W+B and Deltares with two goals: 
(1) extension of OpenCLSim with critical path module 

(2) increase OpenCLSim community



Critical path

5

˗ Critical path in a project:
· the sequence of activities

· determining the minimum time needed to complete the project

˗ Delay in activity on critical path ⇒ delay in project delivery

˗ Project management aim: 

· maximize utilization of most expensive assets



Example case – illustration

6

˗ Simple example: one cutter, many barges
· cutter collects dredging material from a source location

· material is moved by a fleet of n barges to a reclamation site until full

˗ Cyclic sequence of tasks for each barge:

· sail empty towards the source location

· cutter fills the barge
· sail full towards the reclamation site

· unload



Example case – critical path

7

˗ General aim: full utilization of the (expensive) cutter
· how many barges needed at minimum to achieve?

˗ Relation to the critical path

· the cutter is always (mostly) on the critical path

· if moving activity of barges is not critical, it can apply green/slow steaming

˗ For complex (stochastic) simulations
· insights into processes/activities that are vulnerable



Technical approach – outline

8

˗ Usual workflow
· define OpenCLSim vessels and locations

· define OpenCLSim activities

· run the simulation and inspect the results

˗ Result: sequence of activities through simulation time

· something that happens in a certain timespan for some reason at some location 
with some objects involved, and possibly triggers another activity



Technical approach – outline

9

˗ Usual workflow
· define OpenCLSim vessels and locations

· define OpenCLSim activities

· run the simulation and inspect the results

˗ Result: sequence of activities through simulation time

· something that happens in a certain timespan for some reason at some location
with some objects involved, and possibly triggers another activity



Technical approach – outline

10

˗ Usual workflow
· define OpenCLSim vessels and locations

· define OpenCLSim activities

· run the simulation and inspect the results

˗ Result: sequence of activities through simulation time

· something that happens in a certain timespan for some reason at some location
with some objects involved, and possibly triggers another activity

Example
- cutter starts loading barge 1 at 

time t1, the loading finishes at t2 

- because barge 1 arrives at the 
cutter, and the cutter is available

- after finishing, barge 1 starts 
sailing to the reclamation site



Technical approach – outline

11

˗ Usual workflow
· define OpenCLSim vessels and locations

· define OpenCLSim activities

· run the simulation and inspect the results

˗ Result: sequence of activities through simulation time

· something that happens in a certain timespan for some reason at some location
with some objects involved, and possibly triggers another activity

˗ All results are stored in the OpenCLSim logging

· aim: exctract the critical path

Example
- cutter starts loading barge 1 at 

time t1, the loading finishes at t2 

- because barge 1 arrives at the 
cutter, and the cutter is available

- after finishing, barge 1 starts 
sailing to the reclamation site



Technical approach – outline

12

˗ Example illustrates two aspects
· which activity happened when, and which objects were involved?

· why does something happen, specifically the relations between activities?

loading sailing fullsailing empty

loading

barge 1

cutter

t1 t2

unloading

preparation



Technical approach – outline

13

˗ Example illustrates two aspects
· which activity happened when, and which objects were involved?

· why does something happen, specifically the relations between activities?

loading sailing fullsailing empty

loading

barge 1

cutter

t1 t2

unloading

preparation



Technical approach – outline

14

˗ Technical tasks
· (1) extract activities as simulated by OpenCLSim and their dependencies

· (2) from that find the critical path

loading sailing fullsailing empty

loading

barge 1

cutter

t1 t2

unloading

preparation



Technical approach – (1) finding the critical path 

15

˗ Interdependent activities resemble directed graph
· activities represent a node-edge-node combination from a start

node to an end node

· activity duration as weight of the activity-edge

· dependencies are additional directed edges from the end of one 

activity to the start of another
˗ Critical path → longest path through the graph



16

loading

sailing

unloading

processingpreparing

time

Technical approach – (2) finding the critical path 



17

loading

sailing

unloading

processingpreparing

time

Technical approach – (2) finding the critical path 



18

loading

sailing

unloading

processingpreparing

time

Technical approach – (1) finding the critical path 



Technical approach – (1) finding the critical path 

19

˗ Usage of Python package: networkx
˗ Pre-existing function to find a longest path

· longest path is not unique (e.g. independent parallel activities)

· custom-built functionality that iteratively checks all longest path

· specific interest: which activities are on a longest path (i.e. critical path)



Technical approach – (1) finding the critical path 

20

˗ Usage of Python package: networkx
˗ Pre-existing function to find a longest path

· longest path is not unique (e.g. independent parallel activities)

· custom-built functionality that iteratively checks all longest path

· specific interest: which activities are on a longest path (i.e. critical path)

Solved



Technical approach – (2) activities and dependencies

21

˗ Needed: relevant info to build the graph
· activities as simulated → existing OpenCLSim logging

· dependencies → not straightforward



Technical approach – (2) activities and dependencies

22

˗ Finding dependencies
· activity logs no info on ‘who triggered me’ or ‘who do I trigger’

· assumptions on start and end times and shared objects not sufficient

˗ Solution

· core functionalities of parent package SimPy

· inspect the queue of activities to detect triggers of new activities
· resulting in explicit logging of dependencies while simulating



23

Gannt chart for cutter and barges. The critical path is added as red line under and over activities. 



Results

24

˗ Build-in functionality for critical path extraction from OpenCLSim simulations
˗ Visualization of the critical path

˗ Jupyter Notebook example

˗ Active member of OpenCLSim community, application in other projects

See also: de Boer G.J. et al., Simulation for sustainability: alternative operating strategies 
for energy efficiency, Terra et Aqua #170 - SUMMER 2023, pp. 6-17

Repository: https://github.com/TUDelft-CITG/OpenCLSim

https://www.iadc-dredging.com/wp-content/uploads/2023/06/Terra-et-Aqua_170-Summer-2023-TECHNICAL-single-pages.pdf
https://www.iadc-dredging.com/wp-content/uploads/2023/06/Terra-et-Aqua_170-Summer-2023-TECHNICAL-single-pages.pdf
https://github.com/TUDelft-CITG/OpenCLSim


www.witteveenbos.com


