Determination of water by applying algorithms on remote sensing data

Ondertitel

Nelen & Schuurmans

07-12-2023

Thomas Berends

- > Tu Delft
- > Nelen & Schuurmans

Taj de Vries

> Nelen & Schuurmans

- > Problem description
- > Goal
- > Data inventory
- > Method
- > Results
- > Conclusion & further development

Rijkswaterstaat Ministerie van Infrastructuur en Milieu

Hoogheemraadschap van Rijnland

- > Netherlands consist of a vast number waterways
- > Waterway have a legally established target
- > Assessment of target levels
 - > By hand
 - > Sensors
- > Only 700/2600 fixed drainage level areas
- > Labor intensive process

- > Increased use of remote sensing data
 - > Measuring DEM (AHN)
 - > Assessment of dikes (HHNK at Purmerend)
- > Byproducts; measurement of water levels

- > Large amount of data available
- > Hard to process
 - > Large files
 - > Technical knowledge
- > Data enrichment
- > Develop an easy & accessible method for processing

- > Remote sensing data (.las/.laz files)
- > Data received
- > Not al data is processed yet

Organisation	Location	Point density (m2)
AHN (Public)	Netherlands	~8
RWS	Maas 2021	30-40
Wetterskip	Buitenpost	20-30
нник	Purmerend	200-300

- > Point cloud in .laz files
- > BGT-waterdelen: shapefile (.shp) with waterbodies in the Netherlands
- > Unfiltered point cloud

- > R-tree: data structure for storing spatial indexes
- > Created at initilization
- > 2 trees from input shapefiles
 - > BGT-waterdelen
 - > Fixed level drainage areas (peilgebieden)

tree = STRtree(waterbodies)
tree_pg = STRtree(peilgebieden)
print("Total points: ", len(las.X))

- Loop through points >
- Store information >

efficiency

>

- > Filtered point cloud
- > Lot of noise remains
 - > Tree's;
 - > Bridges;
 - > etc.
- > Further Filtering necessary

Additional filtering methods: 1. Vertical slicing

- Legally established fixed drainage
 water level
- > Create upper and lower limit
- > Only consider points between limits

- > Create grid cells based on
 - 1x1m raster cells
- Calculate value distribution
 for all points within raster cell
- > Take modal/mean value

remove duplicate indices by keeping the most frequent value
da = da.groupby(level=[0, 1]).agg(lambda x: x.value_counts().index[0])

Filtering methods: 3. point/polygon statistic

- > Create a polygon
- > Filter out points in point cloud
- > Create point statistics
 - > Mean
 - > Modal
 - > Distibution

Z-waarde met hoogste frequentie: -2.44 mNAP

Nelen & Schuurmans

- > Large data gaps
- > Lower point intensity
- > Low water reflection
- No date of collection available
 for comparison

Initial Results HHNK

- > Comparison measures water level pump station
- > Promising results

Name	Fixed drainage level[mNAP]	Analysis method	Value [mNAP]	Standard deviation [cm]	Difference [cm]
Vurige start	-2.42	measurement	-2.467		
		1	-2.443	2.4	-2.4
		2	-2.47	N.A.	-1.4
De Gors	-1.81	measurement	-1.803		
		1	-1.808	2.1	0.453
		2	-1.8025	N.A.	-2.4

- > Quality very dependent on data
- > Method very situation dependent
- > Method relatively slow

Method 1	Method 2	Method 3
Deterministic	Skewness in data	Low statistical value
Not able to catch deviations	Noise remains in data	

- > Tool for easy processing
- > Stepwise process
- > Enrich already available data
- > Optimize scripting process

- > Good initial results
- > Very dependent on input data
- > Room for further development
- Could also be used for non-water polygons

